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SUMMARY

Plants respond to abiotic stress through a variety of physiological, biochemical, and transcriptional mecha-

nisms. Many genes exhibit altered levels of expression in response to abiotic stress, which requires con-

certed action of both cis- and trans-regulatory features. In order to study the variability in transcriptome

response to abiotic stress, RNA sequencing was performed using 14-day-old maize seedlings of inbreds

B73, Mo17, Oh43, PH207 and B37 under control, cold and heat conditions. Large numbers of genes that

responded differentially to stress between parental inbred lines were identified. RNA sequencing was also

performed on similar tissues of the F1 hybrids produced by crossing B73 and each of the three other inbred

lines. By evaluating allele-specific transcript abundance in the F1 hybrids, we were able to measure the

abundance of cis- and trans-regulatory variation between genotypes for both steady-state and stress-

responsive expression differences. Although examples of trans-regulatory variation were observed, cis-regu-

latory variation was more common for both steady-state and stress-responsive expression differences. The

genes with cis-allelic variation for response to cold or heat stress provided an opportunity to study the basis

for regulatory diversity.
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INTRODUCTION

Plants experience a myriad of abiotic stresses over the

course of one life cycle including extreme temperatures,

drought, and nutrient deficiencies. Because plants are ses-

sile, they utilize multiple mechanisms to respond to, and

survive, in these diverse environments. These stresses can

have negative effects on plant health, survival, and in the

case of crops, a significant loss of yield. For example, tem-

perature stress has been shown to negatively affect germi-

nation, stunt growth, increase leaf chlorosis and necrosis,

and reduce yield (Yadav, 2010; Hasanuzzaman et al., 2013).

Constitutive responses to adverse environments can also

limit growth and fitness (Gilmour, 2000; Dubouzet et al.,

2003). Therefore, plants have evolved physiological, bio-

chemical, and transcriptional processes to sense and

respond to environmental stresses (Mickelbart et al., 2015).

While there are important biochemical and physiological

responses to abiotic stress (Ashraf and Hafeez, 2004;

Crafts-Brandner and Salvucci, 2002; reviewed in

Hasanuzzaman et al., 2013), underlying regulation of gene

expression plays an important role for tolerance to many

different stress responses (Wang et al., 2004; Miura and

Furumoto, 2013). Many QTL studies have highlighted the

importance of altered gene expression levels or patterns in

driving functional variation among alleles. We were inter-

ested in understanding the mechanisms that drive allelic

variation for response to environmental conditions in order

to understand the sources of functional allelic variation

that might contribute to local adaptation.

Expression of genes coding for key components in

stress response pathways is essential for tolerance to abi-

otic stress. Several transcription factors (TFs) directly affect

responses to temperature stress by inducing transcription

of important stress response genes (Abe et al., 1997;

Hasanuzzaman et al., 2013; reviewed in Qu et al., 2013). In

Arabidopsis thaliana a set of TFs called dehydration-

responsive element binding (DREB) factors or C-repeat
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binding factors (CBF) plays an important role in tolerance

to various abiotic stresses including tolerance to cold,

drought, and heat (Jaglo-Ottosen, 1998; Schramm et al.,

2008; Sakuma et al., 2006). CBF/DREBs play similar roles

in many flowering plants including maize, rice, and soy-

bean (Dubouzet et al., 2003; Chen et al., 2007; Liu et al.,

2013). There is also evidence from Arabidopsis thaliana

studies that expression of cold-responsive (COR) genes

and heat shock protein (Hsp) families are important for

cold and heat tolerance, respectively (Yadav, 2010;

Hasanuzzaman et al., 2013).

Multiple studies have described cis-regulatory elements

upstream of known stress-induced genes, including dehy-

dration response element (DRE), abscisic acid (ABA)

responsive promoter elements (ABREs), and heat shock

elements (HSEs, reviewed in Raghavendra et al., 2010;

Yamaguchi-Shinozaki and Shinozaki, 1994; Guiltinan et al.,

1990). These elements provide the necessary binding site

for TFs to confer stress-responsive gene expression (Yam-

aguchi-Shinozaki and Shinozaki, 1993; Hovarth et al., 1993;

Schoffl et al., 1998; Mittal et al., 2011; Raghavendra et al.,

2010). The cold and drought-responsive genes DREB1A

and DREB2A also bind to cis-DREs upstream of responsive

genes, which resulted in expression of downstream genes.

These two DREB genes increase in expression indepen-

dently under different stresses and induce the up-regula-

tion of different downstream genes. This situation

suggests that the DREB genes function and are induced

independently (Liu, 1998). Two recent studies have

explored sources of regulatory variation for gene expres-

sion responses to drought conditions on a genome-wide

level. One study, in Arabidopsis thaliana, monitored both

steady-state and drought-responsive cis- and trans-regula-

tory variations (Cubillos et al., 2014). A study in switch-

grass also detected signatures of steady-state and stress-

responsive regulatory variations in response to drought

(Lovell et al., 2016). Both studies found a bias toward cis-

regulatory variation when contrasting accessions, as well

as treatment and control plants (Cubillos et al., 2014; Lovell

et al., 2016).

Maize (Zea mays) exhibits substantial genomic and tran-

scriptomic diversity between inbred lines (Chia et al., 2012;

Hirsch et al., 2014). Both cis- and trans-regulatory varia-

tions contribute to this diversity and have been shown to

play important roles in processes including domestication

and heterosis (Stupar and Springer, 2006, Holloway et al.,

2011; Li et al., 2013; Swanson-Wagner et al., 2009; Lem-

mon et al., 2014; Hirsch et al., 2014). The sources and

prevalence of cis- and trans-regulatory variations and their

role in stress response remain poorly characterized in most

species including maize. One recent study suggested trans-

posable element (TE) polymorphism may be one source of

cis-regulatory variation for the allele-specific response to

abiotic stress (Makarevitch et al., 2015).

In this study we utilized the extensive natural variation

of maize to study variation in the abiotic stress response

among different genotypes. By monitoring allele-specific

gene expression in heterozygous plants it was possible to

identify examples of cis-regulatory variation for respon-

siveness to cold or heat stress. In particular, first we con-

firmed that there is genetic variation for transcriptional

responses to stress between our parents. Next we showed

that while cis-regulatory variation is more common than

trans-regulatory there is ample evidence for both cis- and

trans-regulatory variations both at the steady-state and in

response to stress. Our results provide a comprehensive

picture of the genetic variation that contributes to the evo-

lution of stress responses to the abiotic environment.

RESULTS

RNA-seq was used to survey natural and allelic variation in

global gene expression in response to cold and heat stress

in several maize inbred and hybrid genotypes. The inbred

parents (B73, Mo17, PH207 and Oh43) were selected

because they have genetic/genomic resources, including

whole genome assemblies (B73 and PH207) or deep re-

sequencing data (Mo17 and Oh43). These inbred lines also

represent four different population groups of maize (Nel-

son et al., 2008) and provide transcriptome diversity (Stu-

par et al., 2008). The F1 hybrids B73xMo17, B73xPH207,

and Oh43xB73 were used to examine the relative expres-

sion of alleles in hybrids. The transcriptome data were pro-

duced in two separate experiments. The first experiment

included B73, Oh43 and Oh43xB73. The second experiment

included B73, PH207, Mo17, B73xMo17 and B73xPH207. In

total, this provided three triplet combinations of two par-

ents and their F1 off-spring for all conditions with data

from the same experiment. For all seven genotypes, RNA-

seq was performed for three biological replicates of 14-

day-old seedlings subjected to control, cold or heat treat-

ments (Table S1). Gene expression levels were estimated

from the RNA-seq data by aligning the reads to single

nucleotide polymorphism (SNP)-corrected reference gen-

omes and counting uniquely aligning reads (Dataset S1).

For the hybrid genotypes, the allele-specific expression

(ASE) ratios were determined using SNPs within the tran-

scripts to count reads derived from each allele (Dataset

S1). This dataset provides data for 25 433–25 641

expressed genes in each genotype by treatment combina-

tion and approximately 74% of these genes had ASE data

in the hybrid.

Transcriptome changes induced by stress highlight roles

of known regulatory pathways

Stressed samples were collected immediately following

the treatment to reduce gene expression differences due to

morphological changes and developmental differences

between control and stressed plants that could arise
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during subsequent growth (Makarevitch et al., 2015). There

were no apparent morphological differences immediately

following the stress treatment, but leaf necrosis and

reduced growth of stressed plants is apparent several days

after the stress treatment. In order to confirm that the cold

and heat stress treatments were triggering cold or heat

responses we investigated the gene ontology (GO) terms

over-represented in up-regulated genes following heat or

cold treatment (see Experimental procedures for details).

As expected, we found that 72% and 52% of the 25 most

significant over-represented GO categories were associ-

ated with response to stress in cold and heat conditions,

respectively (Tables S2 and S3).

The importance of transcription factors (TFs) for stress

response in Arabidopsis thaliana, maize, rice, and wheat is

well documented (Abe et al., 1997; Qin et al., 2004; Wang

et al., 2004; Lata and Prasad, 2011; Mizoi et al., 2012). We

assessed whether maize TF families were enriched for up-

regulated genes in response to heat or cold stress. In total,

20 of the 57 annotated maize TF families (Yilmaz et al.,

2009) were enriched for up-regulated genes in cold and/or

heat stress relative to control conditions in at least three of

the inbred genotypes (Figure S1a). Eight families of TFs

enriched for genes that were up-regulated in response to

heat stress included the heat shock (HS) and the

myeloblastosis (MYB) TF families (Figure S1a). Many (15/

29) of the HSF TFs showed a significant (FDR corrected P-

value <0.01) increase of expression in B73 plants exposed

to heat stress (Figure S1b). There were 18 families of TFs

enriched for up-regulation in response to cold stress,

including the APETALA2/Ethylene Responsive Factor (AP2/

EREB), which contains the maize orthologs of Arabidopsis

DREB/CBF genes. Many (8/13) of the maize CBF/DREB

orthologs (Liu et al., 2013) exhibit up-regulation in

response to cold or heat stress (Figure S1c).

Prior research has provided evidence that genes

responding to abiotic stress often contain proximal cis-ele-

ments, including DRE/CRT, ABRE, HSE, NACR, WRKY,

MYBR, MYCR, or LTRE motifs, which provide binding sites

for DREB/CBF, ABA, HSF, NAC, WRKY, MYB, MYC, or LTR

proteins, respectively (Xiao and Lis, 1988; Guiltinan et al.,

1990; Yamaguchi-Shinozaki and Shinozaki, 1994, 2006).

The genomic distribution of DRE/CRT, ABRE, HSE, NACR,

WRKY, MYBR, MYCR, or LTRE motifs in the B73 reference

genome was used to assess whether these motifs are

enriched near up-regulated genes in response to heat

(n = 1627) or cold (n = 1858) stress in B73. The HSEs were

enriched near genes that are responsive to heat stress, but

not cold-induced genes (Figure S1d). The DRE/CRT, ABRE,

MYCR and WRKY binding sites were all enriched in the

1 kb regions upstream of both cold- and heat stress

induced genes (Figure S1d). The MYBR and LTRE sites are

enriched in distal promoter regions for cold-induced

genes. NACR elements were not enriched in any of the

regions tested (Figure S1d). These results provide evidence

for expected cis-/trans-regulatory pathways leading to the

observed changes in gene expression in response to cold/

heat stress.

Variation for transcriptional responses to abiotic stress

among maize inbreds

Prior studies have documented numerous examples of cis-

and trans-regulatory variation for steady-state transcript

abundance in maize (Stupar and Springer, 2006, Holloway

et al., 2011; Li et al., 2013; Swanson-Wagner et al., 2009;

Lemmon et al., 2014; Hirsch et al., 2014). In this study we

were particularly interested in documenting examples of

variation for responsiveness to heat or cold stress for

specific alleles. Clustering of the gene expression levels

revealed significant treatment effects on the transcriptome,

but also found evidence that genotypes have slightly dif-

ferent responses (Figure S2a, b), with hybrids often exhibit-

ing intermediate responses in both batches of samples

(Figure S2b). Clustering was also performed using genes

that are differentially expressed (DE) in at least one inbred

genotype in response to cold (n = 7838) or heat (n = 7155)

(Figure 1). Visual examination of the clustering suggests

Heat responsive 
genes (N = 7155)

PH
20

7

B7
3

M
o1

7

Cold responsive 
genes (N = 7838)

Log2 (stress/control)

50–5

PH
20

7

B7
3

M
o1

7

Figure 1. Many number of genes show significant genotype and/or treat-

ment effects.

The non-redundant set of cold (left) or heat (right) responsive genes from

genotypes in batch 2 were used to perform hierarchal clustering (UPGMA

method) using the gene expression response values (log2 stress RPM

divided by control RPM). Genes that are up-regulated (red) or down-regu-

lated (yellow) in response to stress in at least one inbred comparison are

visualized. A subset of genes are DE in all three inbred comparisons, but

some genes only have strong responses in one or two genotypes and have

no change in gene expression (black) in other genotypes.
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that many genes had consistent responses to heat or cold

stress in all inbreds. However, there were also a substantial

number of genes with variable responses to cold or heat

treatments among genotypes. Both clustering methods

revealed large transcriptional changes in response to cold

or heat as well as suggesting some variation in those

responses among genotypes. Thus, we next used two

complementary statistical approaches to assess if there

was evidence for genetic variation between parents in tran-

scriptional responses to stress.

For our first approach, we utilized a two-way factorial

analysis of variance (ANOVA) on RPM (reads per million

mapped reads) levels of each gene. This parses expression

variation due to genotype (G), treatment (T) and genotype

by treatment (G 9 T) interactions. We ran this model twice

for each pair of inbred parents; once comparing control

treatment to heat treatment and once comparing control to

cold. (Table 1a; see Experimental procedures for details).

Many expressed genes (21–52%) exhibited significant geno-

type and/or treatment effects after controlling for multiple

comparisons. A smaller subset of genes (1–28%) showed

evidence of genotype-specific responses to treatment

(Table 1(a). There were notable differences in the frequency

of G 9 T effects in the batch 1 samples including B73 and

Oh43 compared to the genotypes in batch 2. It is not clear

whether this is due to biological differences in these geno-

types or technical differences among batches of samples. A

visualization of the amount of variation (g2 values)

explained by genotype, treatment and G 9 T reveal large

clusters of genes predominantly affected by either geno-

type or environment with fewer genes with strong G 9 T

effects (Figure S3). Thus while genotype and treatment

explained much of the variation between parents, there is

evidence for genetic variation in response to stress.

For our second approach we used a negative binomial

generalized linear modeling (GLM) framework to model

differential expression of normalized count data. This

method also provided an opportunity to model ASE levels

of the hybrids enabling an assessment of patterns of gene

expression consistent with environmentally sensitive cis-

and trans-variation (approach adapted from Lovell et al.,

2016). It is important to note that this approach only uti-

lizes reads that can be mapped specifically to one allele in

each parental/hybrid contrast and thus uses a different

dataset than the one described above (see Experimental

procedures for details). We included treatment (control or

stress), allele (parental allele source), and generation (par-

ental or F1) as factors in the model as well as all possible

interactions between them. As expected, allelic identity

and treatment were the most common sources of variation

in expression (Table 1b). However, several hundred genes

exhibit significant variation due to allele by treatment

effects suggesting differential regulation of some alleles in

response to heat or cold stress. A similar number of genes

exhibit significant allele by generation effects suggesting

that these hybrids exhibit differences in expression of cer-

tain alleles compared to the parents. An even smaller num-

ber of genes exhibit significant generation by treatment

interactions that would indicate steady-state trans-

responses or three way interactions trans variationbetween

treatment, allele, and generation, which indicate environ-

mentally sensitive. This suggests relatively rare differences

for expression responses to heat or cold stress in hybrids

compared to inbred parents. The B73/Oh43 contrast

showed a much larger number of significant interaction

terms and this could be due to batch effects or increased

power for this experiment due to lower variation among

replicates. This analysis provides evidence for cis-

Table 1 Number of genes with significant effects for total expression levels or allelic expression levels

Control and cold treatment Control and heat treatment

B73/Mo17 B73/PH207 B73/Oh43 B73/Mo17 B73/PH207 B73/Oh43

(a) ANOVA (RPMs)
Genotype 8691 7851 17 135 9030 7834 16 049
Treatment 8291 6439 16 119 9461 9543 20 461
Genotype by treatment 584 308 8075 918 472 10 950
Total genes with data 39 656 39 656 39 656 39 656 39 656 39 656

(b) GLM (ASE counts)
Allele 5758 5630 5032 5482 5679 4185
Treatment 6482 6554 5821 5835 5992 4857
Generation 296 386 709 244 413 682
Allele by generation 275 297 2273 302 316 1097
Allele by treatment 273 507 1930 236 202 1594
Treatment by generation 1 3 1176 52 5 1181
Treatment by Generation by Allele 1 0 276 2 0 880
Total genes with data 15 997 15 360 15 609 15 837 15 283 15 458

Significance for both tests: FDR < 0.01.
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regulatory variation both for steady-state expression and

for responsiveness to stress.

High levels of cis-regulatory variation contribute to gene

expression differences among genotypes

Previous research has documented high levels of cis-regu-

latory variation, particularly for genes with strong expres-

sion variation between maize inbred lines (Stupar and

Springer, 2006; Holloway et al., 2011; Li et al., 2013). In this

study we had the opportunity to evaluate whether the con-

tributions of cis- and trans-regulatory variation are similar

in different environmental conditions. The relative contri-

bution of cis- and trans-regulatory variation was estimated

for each trio of lines within each environmental treatment.

Biased allelic expression in the F1 provided evidence of cis-

regulatory variation, while balanced expression of the two

alleles suggested trans-regulatory variation, despite differ-

ences in expression in the parental genotypes (Figure 2).

Genes were classified as having cis- or trans-regulatory

variation by performing a chi-square analyses of the

observed read counts relative to either the cis- or trans-ex-

pectation and identifying the genes with significant

(v2 < 0.01) from one expected value but not the other

(Table S4). The observed allelic proportions in the F1
hybrids were compared to the expected allelic proportions

predicted from the relative expression level of the parents

for each gene in each treatment (see methods for details)

in order to visualize the relative contributions of cis- and

trans-regulatory variation (Figures 3 and S4). Cis-regula-

tory variation is quite prevalent in all conditions with fewer

examples of trans-regulatory variation although higher

rates of trans-regulatory variation are observed for the

B73-Oh43 comparison from batch 1 (Table S4). Genes that

are classified as subject to cis-regulatory variation in the

control experiments frequently exhibit cis-regulatory varia-

tion in both of the stress treatment conditions with rela-

tively few examples of the same genes switching to trans-

regulatory variation (Figure S5a). In contrast, it was more

common for genes classified as having trans-regulatory

variation in control conditions to exhibit cis-regulatory

variation in heat or stress conditions (Figure S5b).

Allelic variation for responsiveness to abiotic stress

Given the high levels of transcriptional variation in

response to abiotic stress among maize inbreds and the

frequent cis-regulatory variation within a treatment, we

expected that there would also be examples of cis-regula-

tory variation for gene expression responses to an abiotic

stress. The analysis of allelic variation for response to heat

or cold stress may help uncover the mechanisms that

underlie gain or loss of stress-induced gene expression. In

order to identify examples of genes with regulatory varia-

tion in response to heat or cold stress we found genes with

ASE data with equivalent levels of expression in the two

inbred parents in control conditions, but exhibiting signifi-

cant differences in expression following heat or cold stress

(Figure 4). These include genes with both up- and down-

regulation in response to the stress, as well as genes that

exhibited low or no expression in control conditions. These

could include examples of cis- or trans-regulatory variation

for responsiveness. If a gene has purely trans-responsive

Control Cold Heat
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PH207RP
M

Cis- regulatory variation: GRMZM2G075594 
B73 up- regulated in all treatments
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3
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20

7
Bx

PH B7
3
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7
Bx

PH B7
3
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7
Bx
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Oh43RP
M

Trans- regulatory variation: GRMZM2G001915 
Oh43 up- regulated in control and heat

Control Cold Heat

B7
3

O
h4

3
O

xB

Cis-expectation in F1 Trans-expectation in F1

Differential expression among two inbreds

Two potential models for allelic 
expression patterns in F1

B7
3

O
h4

3
O

xB B7
3

O
h4

3
O
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0
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20

0

20

40

Inbred 1 Inbred 2

F1

Parent 1 %: 75

F1

Parent 1 %: 50

(a)

(b)

(c)

Figure 2. Genes with cis- or trans-regulatory variation between genotypes

within a condition were observed.

(a) In this example the allele of inbred 1 is more highly expressed than the

allele of inbred 2, which is indicated by the thickness of the arrow. If a gene

exhibits cis-regulatory variation then the allelic ratio in the F1 would be

biased toward inbred 1. Whereas, if the gene exhibited trans-regulatory

variation both alleles from the parents would be equivalent.

(b, c) The reads per million mapped reads (RPMs) for a trio of samples

across all treatments are shown for an example of cis-regulatory (b) and

trans-regulatory (c) variation. (b) Shows an example of cis-regulatory varia-

tion where the B73 (black) allele is preferentially expressed in all conditions

as compared to the PH207 allele (green). (c) An example of trans-regulatory

variation for a gene where the Oh43 allele (orange) is more highly

expressed in control and heat treatments. However, in the F1 plants the B73

(black) and Oh43 (orange) alleles exhibit equivalent expression levels.
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regulatory variation, then the two alleles in the stress F1
hybrid should not be statistically different than the propor-

tion observed in the F1 control. Whereas, a biased expres-

sion of alleles in the F1 stress sample suggests responsive

cis-regulatory variation (Figure 4b). For example, by con-

trasting ASE in the F1 hybrids for gene GRMZM2G140082

we observed that both Mo17 and PH207 alleles showed

biased expression compared with the B73 allele, whereas

the Oh43 allele showed equivalent expression in the cold

condition (Figure 4c). The observed bias expression of the

Mo17 and PH207 alleles in the hybrids was in the direction

we would predict given the parental expression values

(Figure 4d). An example of trans-regulatory variation for

stress response (Figure 4e) was observed for gene

GRMZM2G077463, which showed equivalent parental

expression for B73 and Oh43, but higher expression of

Mo17 and PH207 when exposed to heat (Figure 4f). Allelic

ratios of B73 to Mo17 and B73 to PH207 were equivalent in

the respective hybrids under control and stress conditions

(Figure 4g). Hundreds of genes exhibited variation in

stress-induced expression between two parents (Figure 5).

Overall, more genes had altered allelic proportions in the
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Genes that are differentially expressed (DE) between inbreds were identified for each condition. The gap in the middle of each figure is the result of the require-

ment that genes have differential expression in the parents. Each scatterplot shows the entire set of DE genes between B73 and Mo17 for control (left), cold

(middle), and heat (right). Genes with purely cis-regulatory variation are expected to plot along the diagonal blue dashed line while genes subject to trans-regu-

latory variation will plot along the horizontal red dashed line. The inset bar charts in each scatterplot show the distribution of genes in five different categories.

These include genes that are not statistically distinguishable from cis-regulatory (blue) or trans-regulatory (red) variation expectations. In addition, some genes

exhibit a greater allelic bias in the expected direction (green) or a bias toward the opposite allele (yellow) than predicted by parental ratios. The remaining genes

did not fit the statistical cutoffs for cis- or trans-regulatory variation and have an observed allelic proportion that falls between expected cis- and trans-expected

values (grey).
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Figure 4. Examples of responsiveness cis- and

trans-regulatory variation.

(a) Responsiveness regulatory variation candidates

were identified by assessing genes that have simi-

lar expression in the control (black circles) and vari-

able response to stress (blue and red dashed

circles) between two inbreds (thickness of arrows).

(b) Cis-regulatory responsiveness variation would

result in approximately equally expression of both

alleles in control conditions, but biased allelic

expression in stress conditions (thicker arrow).

(c) The expression (RPMs) for all genotypes in con-

trol (black) and cold (blue) conditions. Error bars

are standard error for all replicates for each batch,

except for B73 which is the standard error between

batch 1 and batch 2.

(d) Is the proportion of B73 in the F1 hybrids for a

gene that is biased toward Mo17 and PH207 alleles

under cold conditions is shown.

(e) Conversely, if a gene exhibits trans-regulatory

responsiveness variation then both parental alleles

would be equivalently expressed in both control

and stress conditions in the hybrid.

(f, g) (f) The expression levels and (f) proportion of

B73 allele in the hybrids for a gene that is bias

toward Mo17 when contrasting B73 and Mo17

(PH207 was not DE between control and heat)

under heat conditions.

© 2016 The Authors
The Plant Journal © 2016 John Wiley & Sons Ltd, The Plant Journal, (2017), 89, 706–717

Regulatory variation for stress response 711



F1 between control and stress treatments, which would

suggest cis-regulatory variation (Figure 5a). Of the genes

that exhibited allelic bias 84–96% were in the direction we

would predict based on parental expression.

Allelic variation for stress-induced expression can be the

result of a loss or gain of expression activation in response

to stress. Variation in important cis-regulatory elements

upstream of genes could provide a potential mechanism

for loss of expression activation. SNPs within important

cis-binding elements (ABRE, DRE/CRT, and HSE) were

identified within the promoter region for two groups of

genes. The first group of genes exhibited increased expres-

sion following a stress treatment in B73, but no difference

in expression for the other genotype in the trio, whereas

the second group showed an increase in both alleles. If

SNPs in binding motifs are associated with loss of stress-

induced expression, then we would predict a greater rate

of SNPs in binding regions upstream of the genes with

variable response than those with consistent responses for

both alleles. Genes with allelic variation for response to

stress showed a higher rate of SNPs in nearby

cis-regulatory elements than genes where both alleles are

up-regulated for most of the stress by motif combinations

(Table S5). One example, GRMZM2G119258, was catego-

rized as a gene exhibiting cis-regulatory variation for

response to cold stress between B73 and Oh43. B73 had an

intact ABRE element upstream of the gene, while Oh43

and Mo17 contained a SNP (Bukowski et al., 2015) in that

element. The expression level and genotype for PH207 and

B37 (RNA-seq data from Makarevitch et al., 2015) were also

determined (Figure 5b). If the SNP in this motif is associ-

ated with expression differences, then genotypes with the

B73-like haplotype should increase in expression under

stress conditions, and non-B73 haplotypes should not

increase. Analysis of expression showed that B73 and B37

are DE following cold stress while Mo17, Oh43, and PH207

do not respond to a cold treatment (Figure 5b).

The allelic variation for responsiveness to an abiotic

stress could be the result of loss of regulatory information

for one allele, or the result of acquisition of novel regula-

tory information for the other allele. The presence of

retained duplicates from a recent whole genome
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Figure 5. Genes with stress-induced differential expression more often exhibit cis-regulatory variation.

(a) Categorization of cis- and trans-regulatory variation for response to cold and heat stress (gene number listed under the pie charts indicates the number of

genes that could be classified). Each gene was categorized into one of three categories. A majority of genes exhibit biased allelic proportions between the con-

trol and stress F1 samples (blue and grey). Of the genes that show allelic bias a majority showed a bias in the direction we would predict given parental expres-

sion values (blue). This pattern is consistent with cis-regulatory variation. A small proportion of genes (4–16%) showed an allelic bias toward the opposite

parental allele (grey). The rest of the genes exhibit trans-regulatory variation patterns (red) in which the proportion of alleles were not statistically different

(v2 > 0.01) between control and stress conditions in the F1.

(b) An ABRE (coloured oval) located upstream of gene GRMZM2G119258 has a SNP in Mo17, Oh43 and PH207 relative to B73 and B37 (Bukowski et al., 2015).

(c) The relative fold change in gene expression in cold relative to control is shown for GRMZM2G119258 in each of the five genotypes.

(d) The proportion of genes that have a retained duplicate are shown the filtered gene set (FGS, black), classified as cis-regulatory (blue), or trans-regulatory

(red) variation. Maize paralogs (as reported in Schnable et al., 2011) for genes that are expressed, have at least 25 allele-specific expression reads, and are DE

between control and stress in at least one genotype were utilized for this analysis.

(e) The proportion of paralogs in (d) that are also DE in the same direction (up or down) under the same stress conditions are plotted for the three categories:

FGS (black), cis-regulatory (blue), and trans-regulatory variation (red).
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duplication event provides an opportunity to assess the

relative frequency of gains and losses for responsive

expression. Maize underwent a whole genome duplication

event approximately 6–12 million years ago (Gaut and Doe-

bley, 1997). Subsequent fractionation has resulted in fre-

quent loss of paralogs or cis-regulatory elements (Freeling

et al., 2015). A subset of maize genes have retained both

syntenic paralogs (Schnable et al., 2011), which can be

used to assess the likely ancestral state for expression

responses. We can look at the responses of the retained

syntenic duplicates if a gene exhibits allelic variation with

some alleles responding to a stress, and other alleles that

do not respond. If the retained duplicate responds, then

we infer that some alleles have likely lost the expression

response. Alternatively, if the retained duplicate does not

respond to the abiotic stress, we would infer that some

alleles for the gene with a variable response have gained

novel responsiveness. Genes that exhibited cis- or trans-

regulatory variation retain paralogs at a similar rate (44–
49%) to that of other expressed maize genes (44%, Fig-

ure 5c). For the genes classified as exhibiting cis- or trans-

regulatory variation for responses to abiotic stress, we

determined whether the retained duplicates also

responded to the same stress (Figure 5d). The majority of

these genes exhibited stress responses for the retained

duplicates, suggesting that most examples of allele varia-

tion reflect recent loss of stress-responsive expression.

Previous work has shown that genes exhibiting steady-

state changes and cis-regulatory variation patterns tended

to have a higher fold change between inbreds than trans-

regulatory variation (Stupar and Springer, 2006). Compar-

ing the fold change between stress and control treatments

for genes that have responsive cis- or trans-regulatory vari-

ation patterns allowed us to test whether this pattern holds

true for stress-induced expression. A non-redundant list of

genes exhibiting cis- and trans-regulatory variation was

created by combining all genes categorized as cis or trans

from all three trio comparisons. GO enrichment analysis

was performed using the top Arabidopsis thaliana BLAST

hit for this set of genes, and the only enriched biological

process was response to stimulus. In contrast to steady-

state expression patterns, we did not observe a bias of

genes with strong expression variation also exhibiting cis-

regulatory variation for any of the comparisons made in

this experiment (Figure S6). Interestingly, in the contrast of

B73 and Oh43 from batch 1 data we observed a higher

mean and larger variation for genes exhibiting trans-regu-

latory variation then for the genotypes monitored in batch

2 (Figure S6). This result could reflect a biological differ-

ence among these genotypes or technical variation among

batches. Many transcription factor families were enriched

in our stress-induced expression gene sets, therefore we

were interested in which TFs that show stress-responsive

cis- or trans-regulatory variation. Although some TF

families overlap between cis- and trans-genes (EREB and

Orphan), a subset of important abiotic stress response TF

families (MYB and NAC) were only present in the cis-regu-

latory variation category (Table S6).

DISCUSSION

The expression of many genes is influenced by cold (Miura

and Furumoto, 2013) or heat stress (Wang et al., 2004) and

we found that many of these expected changes in gene

expression were observed in our cold or heat stressed

samples. Expression variation is a major contributor to

phenotypic variation within species and divergence among

species. In particular, the developmental timing of gene

expression or responsiveness of expression to environ-

mental stimuli can vary among species. Differential regula-

tion of alleles can result from changes at proximal

regulatory regions (cis), changes in unlinked loci that

encode regulatory molecules such as TFs or regulatory

RNAs (trans), or a combination of both. While researchers

appreciate the importance of variation at cis-regulatory

regions for contributing to differences in both steady-state

expression variation and differences in responsiveness to

environmental stimuli, we lack a detailed understanding of

the sequence changes underlying this variation. In this

study we utilized natural variation in maize to assess the

regulatory variation for steady-state expression levels, as

well as expression responses to heat or cold stress in sev-

eral maize genotypes. Given the previous evidence for

abundant cis- and trans-regulatory variation contributing

to differences in steady-state expression levels (Stupar and

Springer, 2006; Holloway et al., 2011; Li et al., 2013), we

were interested in documenting the contribution of cis-

and trans-regulatory variation for gene expression respon-

siveness to specific treatments such as heat or cold stress.

The relative expression for both parental lines, as well as

the two alleles in hybrid plants grown in control or

stressed conditions were used to identify examples of dif-

ferential response to environment and then to partition

these into cis- or trans-regulatory variation. We found hun-

dreds of genes with variable expression responses to heat

or cold stress, with much of differences due to cis-regula-

tory variation.

These examples of cis-regulatory variation for stress

responsiveness can be utilized to learn about the mecha-

nisms leading to expression variation within species. The

allelic variation for stress-responsive expression could

arise from the loss of responsiveness for an allele or

through the acquisition of novel responsiveness. An analy-

sis of the expression response for paralogs from a recent

whole genome duplication event suggested that in many

cases the variation is likely due to loss of responsiveness

for one allele (Figure 4d, e). This variation can occur due to

SNPs or deletions in binding sites for TFs that are stress-

induced. We were interested in the rare cases of novel
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acquisition of stress responsiveness. These examples may

shed light on the mechanisms that could lead to novel vari-

ation for gene expression responses. Previous research

has suggested that transposon polymorphisms may con-

tribute to stress-responsive expression in maize (Makare-

vitch et al., 2015) and further research into the haplotypes

of genes identified in this study will document the role of

transposon variation at these loci.

Several recent studies (Cubillos et al., 2014; Lovell et al.,

2016) have also studied variation in expression responses

in Arabidopsis and switchgrass. While Lovell et al. (2016)

focused on parental varieties exhibiting strong phenotypic

differences for tolerance to drought stress, both Cubillos

et al. (2014) and this study utilized parental varieties with-

out strong phenotypic differences for tolerance to the treat-

ment conditions. There are some differences in the

sensitivity of B73, Mo17, Oh43 and PH207 to cold and heat

stress in terms of relative growth rates in the days follow-

ing the stress, but these varieties tolerate our stress

regimes and recover. This suggests the abundant molecu-

lar differences for stress-responsive expression are not

contributing to a long-term, major phenotypic difference.

This study was not designed to identify genes that would

provide tolerance to cold or heat stress in maize. Instead,

our goal was to begin to document regulatory features that

contribute to the ability of a gene to respond to cold or

heat stress in maize, and to be able to monitor how varia-

tion in promoter regions may contribute to changes in

responsiveness to stress. Studying regulatory mechanisms

on a large scale is quite complicated, but improvements in

sequencing technology, annotation of genomes, and novel

analytic tools are providing a platform to begin under-

standing complex regulatory mechanisms. This informa-

tion may be useful in developing predictive models for

gene expression responses and for engineering novel

responses to abiotic stress in crops.

EXPERIMENTAL PROCEDURES

Stress conditions, tissue collection, and RNA extraction

Inbred and hybrid maize seedlings were grown under 16 h of light
at 24°C in growth chambers for 14 days. Plants were cold
stressed, heat stressed, or remained in control conditions. Plants
that were cold stressed were placed in a cold room (7°C) for 16 h.
Heat stressed plants were placed in an incubator (50°C) for 4 h.
Above-ground seedling tissue was collected immediately follow-
ing each stress treatment with six plants pooled per sample and
the tissue kept at �80°C. Biological replicates were grown 5 days
apart for all treatments. After tissue collection each pooled sample
was ground in liquid nitrogen. Total RNA was extracted in Trizol
(Life Technologies, NY, USA) and then purified with LiCl.

Sequencing and data processing

RNA-seq libraries were prepared by the University of Minnesota
Genomics Center in accordance with TruSeq library creation
protocol (Illumina, San Diego, CA, USA). Samples were

sequenced using the Illumina HiSeq-2000 platform outputting 15–
30 million reads per sample. All replicates and conditions of B73
were aligned to the maize reference genome (B73 AGPv2). To
improve mapping quality of the non-reference inbreds, SNP-cor-
rected references were made for Mo17, PH207, and Oh43. The
SNP-corrected references were made by taking the B73 reference
fasta file and replacing the nucleotides where a SNP was present
between the two inbreds. Each sample of Mo17, PH207, and Oh43
was aligned to their respective corrected reference. All alignments
were made using Tophat 2 (version 2.1.0, Kim et al., 2013) and
bowtie2 (version 2.0.10, Langmead and Salzberg, 2012). To keep
alignments consistent across all samples, only reads that mapped
without any mismatches were retained and used for counts and
reads per million mapped reads (RPM) calculations (Tophat2
option -N 0). Bamtools (version 2.3.0) was used to filter out reads
that mapped with indels or to multiple places in the genome (Bar-
nett et al., 2011). Inbred and hybrid samples were aligned to both
parental references using the same criteria (e.g. B73xOh43 was
aligned to both B73 and Oh43 corrected references). Any SNPs
that were not fully validated for the inbred samples were removed
from subsequent analyses. To obtain ASE counts for hybrids,
reads from the two alignments for each hybrid were compared
and reads that mapped uniquely to one parent were retained. All
uniquely mapping reads from inbred parents and the ASE counts
from the hybrids were run through HTSeq (version 0.6.1p1,
Anders et al., 2014) to get per gene counts and per gene ASE
counts, respectively. RPM values, were calculated for all inbred
parents by using the count files from HTSeq. Hybrid RPM values
were calculated by summing the parent specific reads and the
reads that mapped equally to both parents.

ANOVA and eta-squared

A pairwise two-way factorial ANOVA was run for each gene on all
biological replicates for a pair of inbreds and conditions (e.g. con-
trol and cold) using the aov function in R (Chambers, 1992) to look
for significant genotype, treatment, and genotype by treatment
effects. RPMs for each sample were used. Statistical significance
was determined for each factor by calculating FDR corrected P-
values. For a factor to be considered significant the adjusted P-
value had to be <0.05. Eta-squared values were used to estimate
the effect size of each factor from the ANOVA (G, T, and G 9 T)
for each gene. Eta-squared values were also calculated for each
gene with at least one significant factor from the ANOVA. Eta-
squared values were calculated in R using the eta-Squared func-
tion within the lsr package in R (Navarro, 2015).

Generalized linear model (GLM)

Allele-specific counts (see the Sequencing and data processing
section for details) for both the inbreds and F1 hybrids in a trio for
control and one stress condition were used to assess which fac-
tors contribute to the variation in allelic expression. (similar to
Lovell et al., 2016). The allele-specific counts for genes that have a
mean ASE count >5 for both alleles were fit to a negative binomial
model using DESeq2 (Love et al., 2014) with:

logyij ¼b0 þ bT Ti þ bAAi þ bGGi þ bTATi � Ai þ bTGTi �Giþ
bAGAi �Gi þ bTAGTi � Ai �Gi

where for individual i at gene j, Ti describes treatment where
control is the baseline and the treatment (cold or heat) is the alter-
nate set, Ai is the allele where the baseline is B73 and the alternate
is non-B73, Gi represents the generation where the baseline is the
inbreds (F0) and the alternate is the hybrid (F1). In order to test
whether any factor or interaction between factors were significant
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we applied nested likelihood ratio tests (LRT) and used FDR cor-
rected P-values (<0.01). We tested the significance of all possible
individual factors and interactions beginning with the highest order
interaction. If the highest order interaction was not significant, we
dropped that term and tested each subsequent two-way interaction
while controlling for the other two interactions. If none of the two-
way interactions was significant, we tested for each individual fac-
tor while controlling for the other two individual factors.

GO analysis

Genes that were up-regulated in response to cold or heat for each
genotype were independently run through the BinGO plug-in from
Cytoscape to assess enrichment of biological processes (Maere
et al., 2005). The top Arabidopsis BLAST hit for each gene was
used to run the enrichment analysis using the default statistical
options and Arabidopsis thaliana database. The entire list of the
enriched biological processes for each genotype was combined
and a non-redundant (NR) list was created. The corrected P-value
for each inbred was pulled for the top 25 most significant NR GO
categories.

Transcription factor and motif enrichment

The entire set of available characterized maize transcription factors
(TFs, Yilmaz et al., 2009) was used to test whether certain TF fami-
lies were associated with stress-induced DE genes. Enrichment of
TFs were calculated by contrasting the number of up-regulated
genes in at least three genotypes under cold or heat treatments to
the expected number (ratio of genes that are up-regulated in at
least three genotypes in the entire filtered gene set). A chi-squared
test was used to determine which families were statistically
enriched (v2 < 0.01) in our up-regulated gene sets.

The Find Individual Motif Occurrences (FIMO, Grant et al., 2011)
tool, which is part of the MEME suite (version 4.4, Bailey and
Elkan, 1994) was used to count the number of DRE/CRT, ABRE,
HSE, NACR, WRKY, MYBR, MYCR, and LTRE motifs throughout
the B73 reference genome. The number of motifs per bin
upstream, downstream, and within each gene was calculated by
summing the number of motifs overlapping the specified bin
using the BEDTools (version 2.25.0, Quinlan and Hall, 2010) win-
dow tool. Each motif was counted per bin (5–2.5, 2.5–1, and 1 kb
for both 50 and 30 ends) and within the gene for up-regulated
genes in response to cold or heat and across the entire filtered
gene set. Enrichment of motifs was calculated for each bin by con-
trasting the proportion of up-regulated genes that have at least
one motif in a particular bin to the proportion of genes that have
at least one motif in that bin in the genome. A chi-squared test
was run to see if the observed number of motifs per bin was sta-
tistically different from expected.

Differential expression

Raw read counts were run through the DESeq package in R
(Anders and Huber, 2010) to run statistical tests for differential
expression between control and stress (stress-induced DE) for
each parent comparing control to cold or heat as well as between
inbred genotypes within each condition (genotype DE). Differen-
tially expressed genes were identified by having an adjusted P-
value (FDR) <0.01, an RPM >0.5 for both parents (genotype DE) or
in control and stress (stress-induced DE), and at least a two-fold
difference in expression between genotypes (genotype DE) or
between control and stress (stress-induced DE). Genes that turned
‘on’ or ‘off’ in response to stress have an FDR < 0.01 and exhibited
a 10-fold difference in expression between genotypes (genotype
DE) or between control and stress (stress-induced DE).

Identifying cis- and trans-regulatory variation

Genotypic regulatory variation. Each gene that is DE
between two inbred parents was run through independent chi-
squared tests to test for cis- and trans-regulatory variation. Genes
that exhibit cis-regulatory variation will show a biased allelic pro-
portion in the F1, where the expected value is the total number of
allele-specific reads for a given condition multiplied by the propor-
tion of the parental alleles, and the observed values are the num-
ber of allele-specific read counts for both alleles in the F1. The test
for trans-regulatory variation used the total number of allele-speci-
fic reads in the hybrid divided by two for the expected value and
the same observed values as the test for cis-regulatory variation.
Genes that are not statistically different than expected for cis- or
trans-regulatory variation patterns (v2 > 0.01) were categorized as
examples of cis- or trans-regulatory variation.

Stress-responsive regulatory variation. Genes that exhibited
variation in response to stress between two inbreds were used to
assess the contribution of cis- and trans-regulatory variation. A
chi-squared test was applied to these gene sets to test for trans-
regulatory variation patterns. If the proportion of alleles in the
control F1 sample was not statistically different from the propor-
tion in the stress F1, then those genes would be classified as
trans-regulatory variation. Genes whose allelic proportion differed
between the two F1 samples would be classified as cis-regulatory
variation examples. Genes with allelic bias were further binned
into genes whose allelic bias is in the direction we would predict
given parental expression values or toward the opposite allele.
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Figure S2. Transcriptional responses in maize seedlings exposed
to heat or cold treatment.
Figure S3. Genotype or treatment explain most of the variation
observed in ANOVA analysis.
Figure S4. Classification of differentially expressed genes into reg-
ulatory variation categories for additional trios.
Figure S5. Conservation of cis- and trans-regulatory variation
calls.
Figure S6. Cis- and trans-regulatory variation genes exhibit similar
fold change between stress and control.

Table S1. Sequencing depth for samples used in this study.
Table S2. GO enrichments for up-regulated genes in response to
cold treatment.
Table S3. Enrichment of GO categories for genes that are up-regu-
lated in response to heat stress.
Table S4. Distribution of cis- and trans-regulatory variation calls
for genes DE between genotypes within a condition.
Table S5. Proportion of genes that have cis-elements within 5 kb
upstream and have SNPs within elements.
Table S6. Stress response genes that are characterized transcrip-
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ples used in the study. For each gene the reads per million (RPM)
and allele-specific counts are provided for each of the RNA-seq
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